Fast Adaptive Penalized Splines

نویسندگان

  • Tatyana Krivobokova
  • Ciprian M. Crainiceanu
  • Goran Kauermann
  • Göran Kauermann
چکیده

This paper proposes a numerically simple routine for locally adaptive smoothing. The locally heterogeneous regression function is modelled as a penalized spline with a smoothly varying smoothing parameter modelled as another penalized spline. This is being formulated as hierarchical mixed model, with spline coefficients following a normal distribution, which by itself has a smooth structure over the variances. The modelling exercise is in line with Baladandayuthapani, Mallick & Carroll (2005) or Crainiceanu, Ruppert & Carroll (2006). But in contrast to these papers Laplace’s method is used for estimation based on the marginal likelihood. This is numerically simple and fast and provides satisfactory results quickly. We also extend the idea to spatial smoothing and smoothing in the presence of non normal response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Asymptotics Of Penalized Splines

The asymptotic behaviour of penalized spline estimators is studied in the univariate case. We use B -splines and a penalty is placed on mth-order differences of the coefficients. The number of knots is assumed to converge to infinity as the sample size increases. We show that penalized splines behave similarly to Nadaraya-Watson kernel estimators with ‘equivalent’ kernels depending upon m. The ...

متن کامل

Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors

Penalized splines have become an increasingly popular tool for nonparametric smoothing because of their use of low-rank spline bases, which makes computations tractable while maintaining accuracy as good as smoothing splines. This article extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. This combina...

متن کامل

Spatially Adaptive Bayesian Penalized Regression Splines (P-splines)

In this paper we study penalized regression splines (P-splines), which are low–order basis splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P–spline method as a heteroscedastic regression function. We develop a full Bay...

متن کامل

Spatially Adaptive Bayesian Regression Splines

In this paper we study penalized regression splines (P-splines), which are low–order basis function splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. While frequentist methods are available to address this issue, no Bayesian techniques have been developed. Our approach is to model t...

متن کامل

On Semiparametric Regression with O'sullivan Penalized Splines

An exposition on the use of O’Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O’Sullivan penalty matrix are obtained. Comparisons between the two types o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007